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Conjugate points in stadium and circle billiards

W. A. Lin and R. V. Jensen
Department of Physics, Wesleyan University, Middletown, Connecticut 06459
(Received 26 June 1997

In the semiclassical approximation of the Green’s function, the Maslov index is obtained by counting the
number of conjugate points along classical orbits. We prove that if an orbit starts from the boundary of a
stadium or a circle billiard, a conjugate point can never land on the boundary and that there is a conjugate point
after a bounce off the boundary if and only if the bounce occurs on a curved side. We demonstrate exceptions
to this simple rule when the orbit starts from the interior of the billiard domain. These results are useful for
semiclassical calculations involving stadium and circle billiaf§4.063-651X97)05711-3

PACS numbefs): 05.45+b, 03.65.Sq, 31.15.Gy, 02.90p

l. INTRODUCTION l;/R;_1—sin 6;_, -1

Sin 01 sin Bj_lsln 01

Semiclassical approximations of quantum mechanics pro- |\7|j=

vide a link between classical orbits and quantum interference sinfj_, sing | lj/Rj—sin 6;
phenomena. One of the important questions is how chaos R; Ri-1 Rj-1R; sin 6,
manifests itself in quantum mechanics. Stadium and circle (1)

billiards are paradigmatic systems for pursuing this question, ) _ . )
The underlying difference in the classical dynamics, chaotid®" lﬁnltbmomdenturrp—hl_,r\]/vgereRj is the radius of Cur:V"’_‘“rJ]re
vs regular, has direct consequences in recent experiments gﬁt € boun "’;Ly attt t?t ogntc_e pOflntﬂ,-dlst 6 at tth ejt "
guantum dot transpoftl—6]. Semiclassical approximations 03223 gr?(ljmt(heeras a(;r;?gr pi?]'n frlgnzetﬁgztart(i)nas oiﬁtzisrc(:)on—
have been employed to study various aspects of these biIIiar%o y ging gp

g . sldered as a reflected ray even though no actual bounce off
systemg1,4,7—12. One of the quantities frequently used in

. . . the wall occury andl; is the distance between the two
these studies is the semiclassical Green’s fundti@®14. It bounces 5 !

is expressed in terms of a sum over classical orbits at con- In terms of the Birkhoff coordinates. the semiclassical

stant energy, with each contributing orbit carrying an ampli-geen's function for a general convex billiard can be written
tude and a phase. Conjugate points are locations along tha%[13 14,18

orbit where the amplitude divergésee Ref[13] for a more
detailed definition of a conjugate pojniThe phase depends i -
on the Maslov index, which requires the knowledge of the Gi(s",s")= — ~/|Du|exr{%3u—i —Mu}.
number of conjugate points encountered by the orbit. The (2mih) s s 2
calculation of the Maslov index is a major task in semiclas- 2
sical calculations.

In this paper we derive a simple rule for counting the '
conjugate points when orbits begin on the boundary of ats’ and end as” at energyé, S, is the actionf?,p-dq of
stadium or a circle billiard. The proof of the rule will be the path|D |=|42S,/ds"9s'|/|z'Z"|, Z' (2") is the longitu-

based on the monodromy matrix of a convex billiard in ging| velocity of the trajectory at the startirignding point,
Birkhoff coordinateq 15]. . and u,, is the Maslov index. The Maslov index, is deter-

Consider a generghard-wal) convex billiard; one can mined by the number of conjugate points encountered along
uniquely specify a classical orbit in terms of the Birkhoff the path plus twice the number of bounces off the billiard
coordinates §,p;) [16]. The position coordinate is defined boundary(assuming a hard wal[8]. D, diverges at conju-
to be the I_ength along the billia_rd boundary from some ref'gate points[8], which makes the semiclassical approxima-
erence point to the bounce point and can be chosen to kg, invalid. To have a good semiclassical approximation, it
increasing in a counterclockwise fashion. The conjugate Mo essential that the end points’) of all the orbits included
mentum variableps=p cosd is the tangential momentum of , the sum are away from conjugate points. Thus knowledge
the billiard along the boundary at the bounce pdib?],  apout exact locations of the conjugate points will help us
where @ is the angle of the reflected ray from the tangentayoid bad semiclassical approximations.

(pointing in thg direction of increasing) to the boundary at Based on the monodromy matrix, we prove in Sec. Il that
the bounce point. _ if an orbit starts from the boundary of a stadiufi),a con-

For an orbit that begins on the boundary of a generajygate point can never land on the boundary éindthere is
convex billiard, we define the monodromy matrix after 3 conjugate point after a bounce if and only if the bounce
bounces aS\/I(”)ZHJ”:lMJ-, where the monodromy matrix occurs on a curved side. We show in Sec. Il that these
for the jth step from the (—1)th bounce point to th¢th  simple rules are violated if the orbit starts from the interior of
bounce point is given bj15] the billiard domain. A condition under which a conjugate

where the summation is over all classical paththat begin
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Rj-1=R;=R and N;_;#N;, then |;<a;_;+a; and
m,;<0. If R_;=R;=R andN;_;=N;, thenm,;=0.

Finally, we findmy,<0 if R;=%, butm,,>0 if Rj=R.
Collecting the above, we have the following characteristics
for signs (+ for greater than zero and for less than zerno

of the elements oM :

- for Rj_lzoc’ RJ:R (3a)

(b) MJZ(_ :) for Rj,]_:OO, R]:m (3b)

L[+ -
Mj:<+ _) for RJ'_]_:R, Rjzoo (3C)

N + -
MJ: . +) for Rj,l:Rj:R, NJ,l:/éNJ (Sd)
. + -
j: 0 + for Rj,lzRJ‘:R, Nj*l:Nj (36)
FIG. 1. When the — 1)th bounce and thgth bounce occur on ) )
different  semicircles, (8 Rsing _;<|, and (b Now let us consider the monodromy matrix aftar
R sin 6_,=Rsin(m—6_)—=Rsin ¢<l, . bounces and denote th&,{) component ofM(™ asm{ .

We prove the following properties associated with the orbit
point lands on the boundary for a circle billiard or a semi-for anyn=1.
circle side of a stadium is derived. In Sec. IV we make some (i) If Ry=2 and if there exists awith R;#= (1<j=<n),

concluding remarks. thenm{Pm{P>0 andm{Pmi)>0.
(i) If Rj=2¢ for all j's (0<j=<n), thenm{7m{?>0 and
IIl. A SIMPLE RULE FOR COUNTING CONJUGATE mgy=0.
POINTS WHEN ORBITS BEGIN ON THE STADIUM (III) If Ry=R and there exists p(1=<j=n) with N;# N,
BOUNDARY thenm{Pm{P<0 andm{PmiY)<o0.

(iv) If Ry=R and N;=N, for all j’'s (1<j=n), then
We now consider an orbit that starts at the boundary of q.n(n)m(n)<0 andm(”)—o

stadium billiard. The stadium boundary is composed of four * (M) mm
sides, two curved sides of raditsand two straight sides of V) h;f i _OOR tf;enm (n)ml(%)>%
lengthW, which can be identified d8 = 1, 2, 3, or 4. Let us %']L cor dmonts ﬁsr‘t;"ézcrgver all possible cases
consider when the orbit has undergamédounces. For an :
g y The orbit has eithelRy=02 or Ry=R. Let us first consider

bounce point of this orbit, we denote the side hit at jte i N
bounce af\; , where G<j=<n. Let us denote the elements of whenRozoo. In this case, we need only to pro(a;jz, (i), (v),
! d (vi). We shall use the method of Induction to prove

M; asmy (k,I=1,2). We examine the signs ofy; . In gen- them From Eqgs(3a—(3e), these properties are satisfied by

eral if the (—1)th bounce occurs on a semicircle W|th
M, after the first bounce. Let us assume that they are satis-

Ri_1=R, thena;_;=R;_;sin#_,; gives the projection of
ji—1 j—1 -1 -1 (n)
the radius of the semicircle contammg thie(1)th bounce ';\'/?gﬁ%’ M. We examine them if they are satisfied by

point onto the lind; . Similarly, if the jth bounce lands on a ) i ) o
semicircle withR; =R, thena;=R; sin 6, gives the projec- First consider the case whel™™ satisfies(i) and (v).
tion of the radius the semicircle containing tiéa bounce 11€re are two possibilitieschoose either upper or lower
point onto the lind ;. We illustrate this in Fig. 1. Since the sign9
Birkhoff angle 6 is within the range (Qr), we have sig>0 + o+
andm;,<0. M(”)=< . t). (4)

Next we consider the sign af;;. ForR;_; ==, we have o
my;<0. ForR;_;=R;=R, if the two bounces occur on the Here we haveR,=R,==. Application of Egs.(33—(3¢)

- . - leads to
same semicircle];=2R sing,_; and m;;>0. If the two
bounces occur on different semicircles, we obviously have i 1)
~ ~ n —

l;>a;_;. Thus, again, m;;>0. Similarly, my;>0 if M -
Rj-1=R andRj=.

Next we conS|der the sign afi,; . If both R;_; andR; are
%, My=0. But if only one of them iso, m21>0 If

+
+

+1
i

_) for R, =00,

M(n+1):(

I+ 4l
I+ 4

) for Ry 1=R, 5)
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depending on whether then{1)th bounce occurs on a

straight side or a curved side.
Next consider whem (" satisfies(i) and (vi):

woc(* %) o

Here we haveRy=« and R,=R. Applying Egs.(38—(3e)
gives

M“‘*”z(i i) for Ry, ;=%
+ + n+1 ’
+ =
|\/|(“+1>=<I :) for Ry;1=R. (7)

For R,;1=R, we obtain the same signs for bdth =N, ;
andN,#N, 1.
Finally, consider whemM (" satisfies(ii) and (v):

* =*
(N =
m(n —( 0 i). )
Here we haveRy=R,=<. Applying Egs.(3a—(3¢) gives
(n+1) + + —
M _ for R, =00,
0 =
l\/|<“+1>:<I 1) for R,;1=R 9
+ + n+1 .

From Eqgs.(5), (7), and(9), we see thaM ("*1) again has
the same propertid$), (ii), (v), and(vi). Thus, by induction,

they are valid for allh=1 whenRy=.

We next consider the other ca$®,=R. Here we need to
verify (iii )—(vi). Equationg(3@—(3€) show that they are sat-

5253
M+ = =7 for Ry =
+ = n+1 '
+ ¥
M(n+1>=(_ +> for Ry,1=R. (13
+ =x

In the case oR,,;1=R, we obtain the same signs for both
Nn: Nn+l and Nrﬁt Nn+l-
Finally, consider whem (" satisfies(iv) and (vi):

M(”)=<8 1) (14)

Here we haveRy=R,=R. Applying Eq. (33 gives

+ F
M(n+1>:( _) for Ryy1=2°, (159
+ -+
+ F
M(n+l):(1 +) for Rn+l:R' anﬁNn+1a
(15b)
M1 — =T for R,1=R, N,=N
0 + Or Rp+1 ) n n+1-

(150

From Egs. (11), (13, and (153—(15¢, we see that
M(*1) again has the same propertiés)—(vi). Thus, by
induction, they are valid for ah=1 whenRy=R. Collect-
ing these results and the results Ry=~, we have proved
that the propertiesi)—(vi) are satisfied for alh=1.

From these properties, we note that, sint® #0, a con-
jugate point can never happen on the boundary. Obviously,
there is no conjugate point between the starting point and the
first bounce, independent of whether or not the starting point

isfied for the first stepM (). Let us assume that they are is on the boundary.

satisfied byM(™. We examine if they are satisfied by

M (n+ 1).

First consider the case whev(" satisfies(iii) and (v).
We have

|v|<“>=(i i) (10)

Here we haveRy=R andR,= . Application of Eqs.(38)—
(3¢ leads to

M“‘“):(I i) for Ry, (=

T + n+1 ’
F o+

|v|<”+1>:( _) for R,.1=R. (11
+ F

Next consider wheM (" satisfies(iii) and (vi):

M(”)=(i i) (12)

Here we haveRy=R,=R. Applying Eqgs.(38—(3€) gives

Now let us examine under what conditions there is a con-
jugate point between theth bounce andr{+1)th bounce
(n=1). Since trajectories are straight between bounces,
there can be at most one conjugate point. It then follows that,
due to the sense of, if m{Im{%3* V<0, two orbits starting
from the same point on the boundary with an infinitesimal
difference in angles do not intersect betweenritreand the
(n+1)th bounce. Hence there is no conjugate point between
the two bounces. On the other handmifYm{}"¥>0, the
two orbits would have intersected between the two bounces
and there is a conjugate point at the intersecib@i.

From Eqgs(4)—(15) above, we obtain Table I, which gives
signs ofm{Ym{%** for all possible combinations d%,, Ry,
and R, ;. This table proves that for ang=1, there is a
conjugate point between theth bounce and r{+1)th
bounce if and only if theath bounce occurs on a curved side
(R,=R). We illustrate this rule in Fig. 2.

A circle billiard is obtained by shrinking the straight sides
of the stadium down to zero. Evidently, Table | applies to a
circle too, with Rpb=R,=R,;;=R. Hence we have also
proved that, for a circle, if the starting point is on the bound-
ary, conjugate points can never land on the boundary and
there is a conjugate point after every bounce.
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TABLE I. Signs of m{m{3*Y. A plus sign indicates that a To simplify the matter, we consider the case of a circle or
conjugate point exists between th¢h bounce and then(+1)th  when both the first and second bounces occur on the same

bounce. A minus sign indicates that no conjugate point exists besemicircle in the case of a stadium. Then we haye 6,

tween the two bounces. andl,=2Rsind;. M, is simplified to

Ro Ry Rn1 sgnm{Zm{5 V) , —2R
© o o - M,= sing, | . 17
00 o0 R — 0 1
> R R + These give
R ) 0 _
R © R - l,—3l

22 =1 18
R R % + 127 singgsing, (18
R R R +

It predicts that ifl ;<<I,/3, there is no conjugate point be-
tween the first and the second bounces; #1,/3, there is a
conjugate point on the boundary at the second bounce and if
I,>1,/3, there is a conjugate point between the first and the
Let us now see what happens when the orbit starts frongecond bounces. These are confirmed by direct numerical
the interior of a stadium or a circle instead of from the Propagations of a pencil of trajectories starting from the
boundary. A practical example of this situation appears ins@me point inside the boundary as illustrated in Fig. 3. The
semiclassical calculations of conductance in ballistic quanaPove presents an explicit rule for the absence of a conjugate
tum dot[10], where a lead is attached on a curved side andpoint after hitting a curved side and before the next bounce
trajectories start from the straight junction between the leadi20]. o ) ) .
and the dot. We shall see that the simple rule of the preced- We see in Fig. 3 that by changing only the starting point
ing section is no longer valid. To illustrate this, we considerof the orbit while allowing it to traverse the same path, it is
whether there is a conjugate point after the first bounce if iiPossible to change the locations of the conjugate points. As
occurs on a curved side. To aid our analysis, it is possible th1 approaches,/3, a conjugate point moves closer to the
insert a fictitious straight side over the starting point withoutPoundary. So does the caustic arising from the pencil of tra-
affecting a pencil of trajectories starting from the same pointjectories. On the other hand, there is another type of caustic
As we shall see, as long as we are concerned with locatiod21l, which is the envelop of a “single” trajectory, as shown
of conjugate points before the orbit hits the fictitious sidein Fig. 4. It forms a circle. We shall refer to this type of
again, the result of our analysis will be independent of thecaustic as aingle-trajectory causti@nd the caustic arising
angle of this straight side. This straight side together withfrom the pencil of trajectories aspencil caustic While the
part of the real boundary again forms a new convex billiardthree central trajectories of Figsé3-3(c) all have the same

Ill. EXCEPTIONS TO THE SIMPLE RULE WHEN ORBITS
DO NOT BEGIN ON THE STADIUM BOUNDARY

system. single-trajectory caustic, they have different pencil-caustic
Thus we have, by Eq1) with Ry=> andR;=R, structures. Conjugate points in general do not reside on the
single-trajectory caustic. What we have shown here clearly
sin 6, -1, demonstrates that the two types of caustics are different and
. - . a proper distinction should be made to avoid confusion.
ML = sin 6, sin Gosin 6, _ (16) In the case of a stadium, we find that it is not only pos-

sin 6y 1,/R—sin 6, sible that no conjugate point exists after hitting a curved side

R sin 6, as shown in Figs. ® and §b); it is also possible that a

conjugate point exists after hitting a straight side, as shown
in Fig. 5b). In Fig. 5b) we haveR; =R, R,=», andR;=R.

We obtain
—2l415+Rsing (1, +
mig =2tz ROl Ta) (19
R sin 6, sin 64 sin 6,
and
211(I,+13) =R sin 8,(11+15,+13)
mi3 = (20

R sin 6, sin 6, sin 05

For the central trajectory of Fig. (B) (R=1),
0,~1.376, 1,~0.366, 1,~1.233, and I;~2.131. These

FIG. 2. For an orbit starting from the boundary of a stadium, 9ive m(122)>.0 and m{Y>0. It predicts no conjugate point
there is a conjugate point after a bounce off the boundary if andfter the first bounce and a conjugate point after the second
only if the bounce occurs on a curved side. bounce, consistent with the figure.
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FIG. 4. Long propagation of the central orbit of FighB The
inner circle, concentric with the circular billiard boundary, forms
the caustic of the “single” trajectory. Every cord is tangent to the
caustic circle. Thus it touches the caustic at the midpoint.

IV. CONCLUSION

In this paper we have proved that by propagating the orbit
starting from the boundary of a stadium or a circle billiard, a
simple rule for counting the conjugate points encountered by
the orbit is obtained. Thus, for semiclassical calculations that
require summations over orbits that begin and end on the
boundary, it simplifies the calculation of the Maslov index

FIG. 3. Pencil of trajectories starting from inside the circle. All
the central trajectories ifa), (b), and(c) traverse the same patta)
1,<1,/3, there is no conjugate point between the first and the sec-
ond bouncestb) |,=1,/3, there is a conjugate point on the bound-
ary at the second bounce and afterward the simple rule in Sec. Il
applies;(c) 1,>1,/3, there is a conjugate point between the firstand g1 5. (a) Sincel,<l,/3, there is no conjugate point between
the second bounces. We find that the distance from the conjugatfe first and the second bouncés) There is no conjugate point
point between the third and the fourth bounces to the fourth bouncgenyeen the first and the second bounces. The second bounce oc-
is less tharls. Consequently, there is no conjugate point betweeners on a straight side and there is a conjugate point between the
the fourth and the fifth bounces. second and the third bounces.

%@
(b) i ;
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for stadium and circle billiards. It also allows analytical deri- stadium, studied by Tomsovic and Hel[&.
vation of the phase associated with the orbit in the case of a We have also proved that conjugate points can never land
circle billiard. on the boundary if the orbit starts from the boundary. If
The simple rule of one conjugate point after every curvedorbits contributing to a semiclassical sufsuch as the
side hit if the orbit starts from the boundary provides anGutzwiller trace formuld13]) depend only on paths but not
unambiguous assignment of the Morse index(the total  starting points(such as periodic orbitsa simple way to
number of conjugate points encountered by the pfbitthe  avoid a conjugate poirivhere the semiclassical approxima-
symbolic code of a trajectory in terms of a sequence of diftion breaks dowhis to start the orbit from the boundary. By
ferent sides hif22], =n., wheren, is the total number of contrast, if orbits begin from the interior of the billiard do-
times a curved side was hit. The connection between classimain, it might not be so easy to avoid the conjugate points
cal indices(such as the Morse index or Maslov indeend  for all the orbits, especially when the number of orbits
symbolic coding of trajectories has been discussed by Eckieeded to be included in the sum is large.
hardt and Wintgef23]. Here we have provided another ex-

ample of such a connection. The correspondence between ACKNOWLEDGMENT
symbolic coding of classical trajectories in the quadratic
Zeeman effect and the four-disk billiard probld28] sug- This research was supported by the N8Brant Nos.
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