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Conjugate points in stadium and circle billiards

W. A. Lin and R. V. Jensen
Department of Physics, Wesleyan University, Middletown, Connecticut 06459

~Received 26 June 1997!

In the semiclassical approximation of the Green’s function, the Maslov index is obtained by counting the
number of conjugate points along classical orbits. We prove that if an orbit starts from the boundary of a
stadium or a circle billiard, a conjugate point can never land on the boundary and that there is a conjugate point
after a bounce off the boundary if and only if the bounce occurs on a curved side. We demonstrate exceptions
to this simple rule when the orbit starts from the interior of the billiard domain. These results are useful for
semiclassical calculations involving stadium and circle billiards.@S1063-651X~97!05711-5#

PACS number~s!: 05.45.1b, 03.65.Sq, 31.15.Gy, 02.90.1p
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I. INTRODUCTION

Semiclassical approximations of quantum mechanics p
vide a link between classical orbits and quantum interfere
phenomena. One of the important questions is how ch
manifests itself in quantum mechanics. Stadium and ci
billiards are paradigmatic systems for pursuing this quest
The underlying difference in the classical dynamics, chao
vs regular, has direct consequences in recent experimen
quantum dot transport@1–6#. Semiclassical approximation
have been employed to study various aspects of these bil
systems@1,4,7–12#. One of the quantities frequently used
these studies is the semiclassical Green’s function@13,14#. It
is expressed in terms of a sum over classical orbits at c
stant energy, with each contributing orbit carrying an amp
tude and a phase. Conjugate points are locations along
orbit where the amplitude diverges~see Ref.@13# for a more
detailed definition of a conjugate point!. The phase depend
on the Maslov index, which requires the knowledge of t
number of conjugate points encountered by the orbit. T
calculation of the Maslov index is a major task in semicla
sical calculations.

In this paper we derive a simple rule for counting t
conjugate points when orbits begin on the boundary o
stadium or a circle billiard. The proof of the rule will b
based on the monodromy matrix of a convex billiard
Birkhoff coordinates@15#.

Consider a general~hard-wall! convex billiard; one can
uniquely specify a classical orbit in terms of the Birkho
coordinates (s,ps) @16#. The position coordinates is defined
to be the length along the billiard boundary from some r
erence point to the bounce point and can be chosen to
increasing in a counterclockwise fashion. The conjugate m
mentum variableps5p cosu is the tangential momentum o
the billiard along the boundary at the bounce point@17#,
where u is the angle of the reflected ray from the tange
~pointing in the direction of increasings) to the boundary at
the bounce point.

For an orbit that begins on the boundary of a gene
convex billiard, we define the monodromy matrix aftern

bounces asM (n)5) j 51
n M̂ j , where the monodromy matrix

for the j th step from the (j 21)th bounce point to thej th
bounce point is given by@15#
561063-651X/97/56~5!/5251~6!/$10.00
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M̂ j5S l j /Rj 212sin u j 21

sin u j

2 l j

sin u j 21sin u j

sin u j 21

Rj
1

sin u j

Rj 21
2

l j

Rj 21Rj

l j /Rj2sin u j

sin u j 21

D
~1!

for unit momentump51, whereRj is the radius of curvature
of the boundary at thej th bounce point,u j is u at the j th
bounce point~the starting point is referred to as the zero
bounce and the ray emerging from the starting point is c
sidered as a reflected ray even though no actual bounce
the wall occurs!, and l j is the distance between the tw
bounces.

In terms of the Birkhoff coordinates, the semiclassic
Green’s function for a general convex billiard can be writt
as @13,14,18#

GEc~s9,s8!5
2p

~2p i\!3/2 (
u~s8,s9!

AuDuuexpF i

\
Su2 i

p

2
muG ,

~2!

where the summation is over all classical pathsu that begin

at s8 and end ats9 at energyE, Su is the action*s8
s9p•dq of

the path,uDuu5u]2Su /]s9]s8u/uż8ż9u, ż8 ( ż9) is the longitu-
dinal velocity of the trajectory at the starting~ending! point,
andmu is the Maslov index. The Maslov indexmu is deter-
mined by the number of conjugate points encountered al
the path plus twice the number of bounces off the billia
boundary~assuming a hard wall! @8#. Du diverges at conju-
gate points@8#, which makes the semiclassical approxim
tion invalid. To have a good semiclassical approximation
is essential that the end points (s9) of all the orbits included
in the sum are away from conjugate points. Thus knowled
about exact locations of the conjugate points will help
avoid bad semiclassical approximations.

Based on the monodromy matrix, we prove in Sec. II th
if an orbit starts from the boundary of a stadium,~i! a con-
jugate point can never land on the boundary and~ii ! there is
a conjugate point after a bounce if and only if the boun
occurs on a curved side. We show in Sec. III that the
simple rules are violated if the orbit starts from the interior
the billiard domain. A condition under which a conjuga
5251 © 1997 The American Physical Society
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5252 56W. A. LIN AND R. V. JENSEN
point lands on the boundary for a circle billiard or a sem
circle side of a stadium is derived. In Sec. IV we make so
concluding remarks.

II. A SIMPLE RULE FOR COUNTING CONJUGATE
POINTS WHEN ORBITS BEGIN ON THE STADIUM

BOUNDARY

We now consider an orbit that starts at the boundary o
stadium billiard. The stadium boundary is composed of fo
sides, two curved sides of radiusR and two straight sides o
lengthW, which can be identified asN 5 1, 2, 3, or 4. Let us
consider when the orbit has undergonen bounces. For any
bounce point of this orbit, we denote the side hit at thej th
bounce asNj , where 0< j <n. Let us denote the elements o
M̂ j asm̂kl (k,l 51,2). We examine the signs ofm̂kl . In gen-
eral, if the (j 21)th bounce occurs on a semicircle wi
Rj 215R, then aj 21[Rj 21sinuj21 gives the projection of
the radius of the semicircle containing the (j 21)th bounce
point onto the linel j . Similarly, if the j th bounce lands on a
semicircle withRj5R, thenaj[Rj sinuj gives the projec-
tion of the radius the semicircle containing thej th bounce
point onto the linel j . We illustrate this in Fig. 1. Since th
Birkhoff angleu is within the range (0,p), we have sinu.0
andm̂12,0.

Next we consider the sign ofm̂11. For Rj 215`, we have
m̂11,0. For Rj 215Rj5R, if the two bounces occur on th
same semicircle,l j52R sinuj21 and m̂11.0. If the two
bounces occur on different semicircles, we obviously ha
l j.aj 21. Thus, again, m̂11.0. Similarly, m̂11.0 if
Rj 215R andRj5`.

Next we consider the sign ofm̂21. If both Rj 21 andRj are
`, m̂2150. But if only one of them is`, m̂21.0. If

FIG. 1. When the (j 21)th bounce and thej th bounce occur on
different semicircles, ~a! R sinuj21,l j and ~b!
R sinuj215Rsin(p2uj21)5Rsinf,l j .
-
e

a
r

e

Rj 215Rj5R and Nj 21ÞNj , then l j,aj 211aj and
m̂21,0. If Rj 215Rj5R andNj 215Nj , thenm̂2150.

Finally, we findm̂22,0 if Rj5`, but m̂22.0 if Rj5R.
Collecting the above, we have the following characterist
for signs (1 for greater than zero and2 for less than zero!
of the elements ofM̂ j :

M̂ j5S 2 2

1 1
D for Rj 215`, Rj5R ~3a!

M̂ j5S 2 2

0 2
D for Rj 215`, Rj5` ~3b!

M̂ j5S 1 2

1 2
D for Rj 215R, Rj5` ~3c!

M̂ j5S 1 2

2 1
D for Rj 215Rj5R, Nj 215” Nj ~3d!

M̂ j5S 1 2

0 1
D for Rj 215Rj5R, Nj 215Nj . ~3e!

Now let us consider the monodromy matrix aftern
bounces and denote the (k,l ) component ofM (n) as mkl

(n) .
We prove the following properties associated with the or
for any n>1.

~i! If R05` and if there exists aj with RjÞ` (1< j <n),
thenm11

(n)m12
(n).0 andm21

(n)m22
(n).0.

~ii ! If Rj5` for all j ’s (0< j <n), thenm11
(n)m12

(n).0 and
m21

(n)50.
~iii ! If R05R and there exists aj (1< j <n) with NjÞN0,

thenm11
(n)m12

(n),0 andm21
(n)m22

(n),0.
~iv! If R05R and Nj5N0 for all j ’s (1< j <n), then

m11
(n)m12

(n),0 andm21
(n)50.

~v! If Rn5`, thenm22
(n)m12

(n).0.
~vi! If Rn5R, thenm22

(n)m12
(n),0.

The conditions listed cover all possible cases.
The orbit has eitherR05` or R05R. Let us first consider

whenR05`. In this case, we need only to prove~i!, ~ii !, ~v!,
and ~vi!. We shall use the method of Induction to prov
them. From Eqs.~3a!–~3e!, these properties are satisfied b
M̂1 after the first bounce. Let us assume that they are sa
fied by M (n). We examine them if they are satisfied b
M (n11).

First consider the case whenM (n) satisfies~i! and ~v!.
There are two possibilities~choose either upper or lowe
signs!

M ~n!5S 6 6

6 6
D . ~4!

Here we haveR05Rn5`. Application of Eqs.~3a!–~3e!
leads to

M ~n11!5S 7 7

7 7
D for Rn115`,

M ~n11!5S 7 7

6 6
D for Rn115R, ~5!
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56 5253CONJUGATE POINTS IN STADIUM AND CIRCLE BILLIARDS
depending on whether the (n11)th bounce occurs on
straight side or a curved side.

Next consider whenM (n) satisfies~i! and ~vi!:

M ~n!5S 6 6

7 7
D . ~6!

Here we haveR05` and Rn5R. Applying Eqs.~3a!–~3e!
gives

M ~n11!5S 6 6

6 6
D for Rn115`,

M ~n11!5S 6 6

7 7
D for Rn115R. ~7!

For Rn115R, we obtain the same signs for bothNn5Nn11
andNnÞNn11.

Finally, consider whenM (n) satisfies~ii ! and ~v!:

M ~n!5S 6 6

0 6
D . ~8!

Here we haveR05Rn5`. Applying Eqs.~3a!–~3e! gives

M ~n11!5S 7 7

0 7
D for Rn115`,

M ~n11!5S 7 7

6 6
D for Rn115R. ~9!

From Eqs.~5!, ~7!, and~9!, we see thatM (n11) again has
the same properties~i!, ~ii !, ~v!, and~vi!. Thus, by induction,
they are valid for alln>1 whenR05`.

We next consider the other case,R05R. Here we need to
verify ~iii !–~vi!. Equations~3a!–~3e! show that they are sat
isfied for the first stepM (1). Let us assume that they ar
satisfied by M (n). We examine if they are satisfied b
M (n11).

First consider the case whenM (n) satisfies~iii ! and ~v!.
We have

M ~n!5S 6 7

6 7
D . ~10!

Here we haveR05R andRn5`. Application of Eqs.~3a!–
~3e! leads to

M ~n11!5S 7 6

7 6
D for Rn115`,

M ~n11!5S 7 6

6 7
D for Rn115R. ~11!

Next consider whenM (n) satisfies~iii ! and ~vi!:

M ~n!5S 6 7

7 6
D . ~12!

Here we haveR05Rn5R. Applying Eqs.~3a!–~3e! gives
M ~n11!5S 6 7

6 7
D for Rn115`,

M ~n11!5S 6 7

7 6
D for Rn115R. ~13!

In the case ofRn115R, we obtain the same signs for bot
Nn5Nn11 andNnÞNn11.

Finally, consider whenM (n) satisfies~iv! and ~vi!:

M ~n!5S 6 7

0 6
D . ~14!

Here we haveR05Rn5R. Applying Eq. ~3a! gives

M ~n11!5S 6 7

6 7
D for Rn115`, ~15a!

M ~n11!5S 6 7

7 6
D for Rn115R, Nn5” Nn11 ,

~15b!

M ~n11!5S 6 7

0 6
D for Rn115R, Nn5Nn11 .

~15c!

From Eqs. ~11!, ~13!, and ~15a!–~15c!, we see that
M (n11) again has the same properties~iii !–~vi!. Thus, by
induction, they are valid for alln>1 whenR05R. Collect-
ing these results and the results forR05`, we have proved
that the properties~i!–~vi! are satisfied for alln>1.

From these properties, we note that, sincem12
(n)Þ0, a con-

jugate point can never happen on the boundary. Obviou
there is no conjugate point between the starting point and
first bounce, independent of whether or not the starting po
is on the boundary.

Now let us examine under what conditions there is a c
jugate point between thenth bounce and (n11)th bounce
(n>1). Since trajectories are straight between bounc
there can be at most one conjugate point. It then follows t
due to the sense ofs, if m12

(n)m12
(n11),0, two orbits starting

from the same point on the boundary with an infinitesim
difference in angles do not intersect between thenth and the
(n11)th bounce. Hence there is no conjugate point betw
the two bounces. On the other hand, ifm12

(n)m12
(n11).0, the

two orbits would have intersected between the two boun
and there is a conjugate point at the intersection@19#.

From Eqs.~4!–~15! above, we obtain Table I, which give
signs ofm12

(n)m12
(n11) for all possible combinations ofR0, Rn ,

and Rn11. This table proves that for anyn>1, there is a
conjugate point between thenth bounce and (n11)th
bounce if and only if thenth bounce occurs on a curved sid
(Rn5R). We illustrate this rule in Fig. 2.

A circle billiard is obtained by shrinking the straight side
of the stadium down to zero. Evidently, Table I applies to
circle too, with R05Rn5Rn115R. Hence we have also
proved that, for a circle, if the starting point is on the boun
ary, conjugate points can never land on the boundary
there is a conjugate point after every bounce.
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III. EXCEPTIONS TO THE SIMPLE RULE WHEN ORBITS
DO NOT BEGIN ON THE STADIUM BOUNDARY

Let us now see what happens when the orbit starts f
the interior of a stadium or a circle instead of from t
boundary. A practical example of this situation appears
semiclassical calculations of conductance in ballistic qu
tum dot @10#, where a lead is attached on a curved side a
trajectories start from the straight junction between the l
and the dot. We shall see that the simple rule of the prec
ing section is no longer valid. To illustrate this, we consid
whether there is a conjugate point after the first bounce
occurs on a curved side. To aid our analysis, it is possibl
insert a fictitious straight side over the starting point witho
affecting a pencil of trajectories starting from the same po
As we shall see, as long as we are concerned with locat
of conjugate points before the orbit hits the fictitious si
again, the result of our analysis will be independent of
angle of this straight side. This straight side together w
part of the real boundary again forms a new convex billia
system.

Thus we have, by Eq.~1! with R05` andR15R,

M ~1!5S sin u0

sin u1

2 l 1

sin u0sin u1

sin u0

R

l 1 /R2sin u1

sin u0

D . ~16!

FIG. 2. For an orbit starting from the boundary of a stadiu
there is a conjugate point after a bounce off the boundary if
only if the bounce occurs on a curved side.

TABLE I. Signs of m12
(n)m12

(n11) . A plus sign indicates that a
conjugate point exists between thenth bounce and the (n11)th
bounce. A minus sign indicates that no conjugate point exists
tween the two bounces.

R0 Rn Rn11 sgn(m12
(n)m12

(n11))

` ` ` 2

` ` R 2

` R ` 1

` R R 1

R ` ` 2

R ` R 2

R R ` 1

R R R 1
m

n
-
d
d
d-
r
it
to
t
t.
ns

e
h
d

To simplify the matter, we consider the case of a circle
when both the first and second bounces occur on the s
semicircle in the case of a stadium. Then we haveu15u2

and l 252Rsinu1. M̂2 is simplified to

M̂25S 1
22R

sinu1

0 1
D . ~17!

These give

m12
~2!5

l 223l 1

sinu0sinu1
. ~18!

It predicts that if l 1, l 2/3, there is no conjugate point be
tween the first and the second bounces: Ifl 15 l 2/3, there is a
conjugate point on the boundary at the second bounce an
l 1. l 2/3, there is a conjugate point between the first and
second bounces. These are confirmed by direct nume
propagations of a pencil of trajectories starting from t
same point inside the boundary as illustrated in Fig. 3. T
above presents an explicit rule for the absence of a conju
point after hitting a curved side and before the next bou
@20#.

We see in Fig. 3 that by changing only the starting po
of the orbit while allowing it to traverse the same path, it
possible to change the locations of the conjugate points.
l 1 approachesl 2/3, a conjugate point moves closer to th
boundary. So does the caustic arising from the pencil of
jectories. On the other hand, there is another type of cau
@21#, which is the envelop of a ‘‘single’’ trajectory, as show
in Fig. 4. It forms a circle. We shall refer to this type o
caustic as asingle-trajectory causticand the caustic arising
from the pencil of trajectories as apencil caustic. While the
three central trajectories of Figs. 3~a!–3~c! all have the same
single-trajectory caustic, they have different pencil-caus
structures. Conjugate points in general do not reside on
single-trajectory caustic. What we have shown here clea
demonstrates that the two types of caustics are different
a proper distinction should be made to avoid confusion.

In the case of a stadium, we find that it is not only po
sible that no conjugate point exists after hitting a curved s
as shown in Figs. 5~a! and 5~b!; it is also possible that a
conjugate point exists after hitting a straight side, as sho
in Fig. 5~b!. In Fig. 5~b! we haveR15R, R25`, andR35R.
We obtain

m12
~2!5

22l 1l 21Rsinu1~ l 11 l 2!

R sin u0 sin u1 sin u2
~19!

and

m12
~3!5

2l 1~ l 21 l 3!2R sin u1~ l 11 l 21 l 3!

R sin u0 sin u1 sin u3
. ~20!

For the central trajectory of Fig. 5~b! (R51),
u1'1.376, l 1'0.366, l 2'1.233, and l 3'2.131. These
give m12

(2).0 and m12
(3).0. It predicts no conjugate poin

after the first bounce and a conjugate point after the sec
bounce, consistent with the figure.

,
d

e-
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FIG. 3. Pencil of trajectories starting from inside the circle. A
the central trajectories in~a!, ~b!, and~c! traverse the same path:~a!
l 1, l 2/3, there is no conjugate point between the first and the
ond bounces;~b! l 15 l 2/3, there is a conjugate point on the boun
ary at the second bounce and afterward the simple rule in Se
applies;~c! l 1. l 2/3, there is a conjugate point between the first a
the second bounces. We find that the distance from the conju
point between the third and the fourth bounces to the fourth bou
is less thanl 5. Consequently, there is no conjugate point betwe
the fourth and the fifth bounces.
IV. CONCLUSION

In this paper we have proved that by propagating the o
starting from the boundary of a stadium or a circle billiard
simple rule for counting the conjugate points encountered
the orbit is obtained. Thus, for semiclassical calculations t
require summations over orbits that begin and end on
boundary, it simplifies the calculation of the Maslov inde

c-

II

te
ce
n

FIG. 4. Long propagation of the central orbit of Fig. 3~b!. The
inner circle, concentric with the circular billiard boundary, form
the caustic of the ‘‘single’’ trajectory. Every cord is tangent to t
caustic circle. Thus it touches the caustic at the midpoint.

FIG. 5. ~a! Since l 1, l 2/3, there is no conjugate point betwee
the first and the second bounces.~b! There is no conjugate poin
between the first and the second bounces. The second bounc
curs on a straight side and there is a conjugate point between
second and the third bounces.
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5256 56W. A. LIN AND R. V. JENSEN
for stadium and circle billiards. It also allows analytical de
vation of the phase associated with the orbit in the case
circle billiard.

The simple rule of one conjugate point after every curv
side hit if the orbit starts from the boundary provides
unambiguous assignment of the Morse indexa ~the total
number of conjugate points encountered by the orbit! for the
symbolic code of a trajectory in terms of a sequence of
ferent sides hit@22#, a5nc , wherenc is the total number of
times a curved side was hit. The connection between cla
cal indices~such as the Morse index or Maslov index! and
symbolic coding of trajectories has been discussed by E
hardt and Wintgen@23#. Here we have provided another e
ample of such a connection. The correspondence betw
symbolic coding of classical trajectories in the quadra
Zeeman effect and the four-disk billiard problem@23# sug-
gests that such a connection may be extended to the soft
ev

s

rd

ev

t,

ev

. B

cs
a

d

-

si-

k-

en
c

all

stadium, studied by Tomsovic and Heller@9#.
We have also proved that conjugate points can never l

on the boundary if the orbit starts from the boundary.
orbits contributing to a semiclassical sum~such as the
Gutzwiller trace formula@13#! depend only on paths but no
starting points~such as periodic orbits!, a simple way to
avoid a conjugate point~where the semiclassical approxim
tion breaks down! is to start the orbit from the boundary. B
contrast, if orbits begin from the interior of the billiard do
main, it might not be so easy to avoid the conjugate poi
for all the orbits, especially when the number of orb
needed to be included in the sum is large.
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